
ISSN 0265-2919

(ee|ol8
) USA & Can $195

_ APPLICATION - ; »> |Next Week

CHESS ON CHIPS We look at how one Sida birt
of the most popular board games has been monitors used with home
programmed for home micros —_

© Our machine code course
: begins a new section with an

HARDWARE ; article about programming
= high resolution graphics on

GOING DOTTY The first of a short series the Commodore 64. In future
that takes an in-depth look at dot matrix ried Meio egier
printers 3 other processors, such as the

| ' 6809 at the heart of the
WISH FULFILMENT The Colour Genie Dragons.
is an inexpensive machine for all the family ¢ A tome corn puter operating

on its own has limitations. By
linking into networks,
however, a wealth of
possibilities materialise.

IN FORMATION Largely ignored by
home micro owners, spreadsheets can be
used for a variety of non-financial tasks

MINESHAFT MANIA We look at a
program that has taken the charts by storm — 31 3

FROM COLD START TO COMPILER
A weekly glossary of computing terms 308

PROGRAMMING PROJECTS

RIDDLE OF THE SANDS We present a
program that poses a sticky problem

RUN SILENT, RUN DEEP Our
Subhunter project has reached its target

LE

o©00000 00 ©00000700

SR

MACHINE CODE

THE GREAT DIVIDE We briefly look at
how division is programmed, before
rounding off this introductory section

WELSH RARE BIT Dragon Data is one
of the great success stories in the British 3270
microcomputing industry :

‘COVER PHOTOGRAPHY BY MARCUS WILSON-SMITH

Editor Jim Lennox; Art Director David Whelan; Technical Editor Brian Morris: Production Editor Catherine Cardwell: Picture Editor Claudia Zeff: Sub Editor Robert Pickering: Designer Julian Dorr Art Assistant Liz Dixon: Editorial
Assistant Stephen Malone, Contributors Steven Colwill, Max Phillips, Matt Nicholson, Sue Jansons, Mike Wesley, Geoff Nairn, Martin Hayman, Rose Deakin, Richard Pawson; Group Art Director Perry Neville: Managing Director Stephen
England; Published by Orbis Publishing Lid: Editorial Director Brian Innes, Project Development Peter Brookesmith, Executive Editor Chris Cooper, Production Co-ordinator |an Paton. Circulation Director David Breed: Marketing Director
Michael Joyce; Designed and produced by Bunch Partworks Ltd; Editorial Office 85 Charlotte Street, London W1P 1LB; © APSIF Copenhagen 1984; © Orbis Publishing Ltd 1984: Typeset by Universe; Reproduction by Mullis Morgan Ltd; Printed

_ in Great Britain by Artisan Press Ltd, Leicester

HOME COMPUTER ADVANCED COURSE — Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95
How to obtain your copies of HOME COMPUTER ADVANCED COURSE — Copies are obtainable by placing a regular order at your newsagent, or by taking outa subscription. Subscription rates: for six months (26 issues) £23.80; for one year (52
issues) £47.60. Send your order and remittance to Punch Subscription Services, Watling Street, Bletchley, Milton Keynes, Bucks MK2 2BW, being sure to state the number of the first issue required.
Back Numbers UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER ADVANCED COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price.
AUSTRALIA: Back numbers are obtainable from HOME COMPUTER ADVANCED COURSE. Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 76/G Melbourne, Vic 3001. SOUTH AFRICA, NEW ZEALAND, EUROPE &
MALTA: Back numbers are available at cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.
How to obtain binders for HOME COMPUTER ADVANCED COURSE - UK and Eire: Please send £3.95 per binder if you do not wish to take advantage of our special offer detailed in Issues 5, 6 and 7. EUROPE: Write with remittance of £5.00 per
binder (incl. p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT. MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER ADVANCED
COURSE BINDERS, Miller (Malta) Ltd, M.A. Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER ADVANCED COURSE BINDERS, First Post Pty Ltd, 23
Chandos Street, St. Leonards, NSW 2065. The binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER ADVANCED COURSE BINDERS, Gordon &

_ Gotch (NZ) Ltd, PO Box 1595, Wellington. SOUTH AFRICA: Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME COMPUTER ADVANCED COURSE BINDERS, Intermag, PO Box 57394,
Springfield 2137. _
Rote - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when
circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or
local taxes, which are not included in the above prices unless stated.

CHESS PROGRAMS/APPLICATION *

CHESS ON CHIPS

One of the most popular applications of
home computers has been games playing,
and it is not surprising that the game to have
received the most attention is one of the
oldest and most highly respected of strategic
board games — chess. We look at some of
the ideas and thinking behind the
development of chess programs on
computers.

Few games have ever captured the imagination as
much as chess: it has been played by millions of
people around the world for thousands of years,
and it is played today with rules almost unchanged
since the 17th century. There are those who devote
their lives to the study and mastery of this game of
strategy, finding satisfaction in its need for
intellectual rigour and agility. The game has
spawned a range of variations that attempt to
introduce greater levels of complexity: for
example, three-dimensional chess involves several
boards suspended in space and demands a lot
more concentration. Another variant is three-
person chess, which is played on a board in the
shape of a Y. On the diagonals where the three
‘wings’ intersect, special rules apply to the
movement of the pieces. The theory behind this

version is that two of the players will unite against
the third and then battle each other for victory. But
none of these variations has managed to displace
the essential two-person confrontation played out
on the 64-square board. :

One reason for this is the almost infinite number
of variations within the game itself. In 1949, the
mathematician Claude Shannon wrote a paper
called ‘Programming a Computer for Playing
Chess’, in which he calculated that there are 10°
possible games of 40 moves. This means that a
person playing chess 24 hours a day, seven days a
week, and taking an hour for each game (which
isn’t long for 40 moves) would take slightly more
than 10” years to play all the possible games! Of
course, chess has now been so_ thoroughly
analysed that this vast range of possibilities is in
practice decreased by a factor that is dependent on
the player’s experience.

Given this complexity, it is hardly surprising
that programming computers to play chess has
consumed much time and effort. Chess programs
have been run on large mainframe computers for
many years, and there are now numerous versions
for home microcomputers. The development of
high-quality microcomputer chess programs is
linked to hardware innovations; problem areas
have always been the lack of sufficient memory

Chesshoard Champ
David Levy is an International
Chess Master who resigned
from competition against
humans in 1978. In 1968 he
wagered a large sum on his
prowess, betting that no
computer chess program
would be able to beat him within
the next 10 years. Since then,
the period covered by the bet
has been extended, but he
remains undefeated. A leading
authority on computer chess,
Levy heads Intelligent Software,
a company that provides the
dedicated programming skills
behind many chess computers
and microcomputer chess
packages. Levy believes that
micros arenow beginning to
approach mainframe performance
inchess playing,and estimates
that within five to eight
years a microcomputer will
be able to defeat Belle (a
dedicated chess machine) and
the mainframe Cray Blitz
(which won the 1983 World

Computer Chess Championship)
— possibly by using parallel
microprocessors to speed
search functions

THE HOME COMPUTER ADVANCED COURSE 301

Strategies
ort to evaluate some of the most popular

S programs for home micros, THe Home Computer
DvaNcED Course conducted a mini-tournament for

these products: Sargon III, running on an Apple Ile
(£41.95 disk — Hayden Software, programming by
Dan and Kathe Spracklen); Cyrus IS Chess on a 48K
Spectrum (£9.95 cassette - Sinclair Software,
programming by Intelligent Software); Colossus 2.0
on a Commodore 64 (£12.95 disk - CDS
MicroSystems, programming by Martin Bryant); and
Grand Master 64, also for the Commodore 64 (£5.95
cassette — Audiogenic, programming by Kingsoft).

Although these programs have played against one
another in international microcomputer chess
tournaments, we wanted an informal evaluation
based on features, playability and competence. The

- mini-tournament consisted of a minimum of two
games for each program, one on the simplest level of
play and the second on a higher, competition level.

and the relatively low speed of processing, but
advances in technology over the last few years
have meant that the quality of such programs is
now dependent on the software.

As computers are essentially high-speed
calculators, computer chess is designed around

- numerical calculations, which are used to evaluate
_ the two essential elements of the game: the

material and mobility. The ‘material’ of a game
tefers to the number and strength of the pieces on
the board. The chess program allocates each piece
a numerical value. The King may be given either
an infinite value or an arbitrarily high one, such as
10,000 (this is done because the loss of the King:
ends the game); the Queen is assigned a value of
nine; the rook is worth five; bishops and knights
three; and pawns one. When considering whether
it is worth sacrificing a piece in order to capture

- one of the opponent’s pieces, the program will
compare their values. Most computer chess
programs place great importance on relative
values, and will rarely swap pieces if this results in a
material disadvantage, unless there is a marked
gain in positional strength.

‘Mobility’ is of great importance in chess as any
piece is of little value if its movement is restricted.
Conversely, its value is enhanced if it can be
positioned in such a way that it asserts influence on
several locations at the same time. The chess
program therefore needs to evaluate mobility as

302 THE HOME COMPUTER ADVANCED COURSE

pens

There was no attempt to determine an overall winner.
One of the problems that arises in playing one

chess computer against another is that it is often
difficult to identify the level of play that gives the two

programs a fair and equal footing. Levels are usually
defined by the length of time the computer allows
itself to search for the best move, butthere may not be
a direct correlation between a 10-second time limit in
one program and the same time limit in another. For
instance, Sargon Ill ‘steals’ time from its opponent
and keeps its move generator operating while its
opponent is moving. All the other programs turn off
their move generators at this point. Nevertheless,
every effort was made to be fair, if not absolutely
precise, in pairing the programs. —

Quality Of Play 7
In general, all the programs played sound, if
uninspired, chess on the lowest level (taking
approximately 10 seconds per move). And all of them
made some very strange, apparently useless, moves
toward the latter stages of the middle game. This was
probably a result of a ‘quiet’ position, in which the
computers simply bided their time until something
interesting happened. On the higher, competition
level (approximately 10 minutes per move), all four
programs showed clever and sometimes brilliant
tactical play. The results of the tournament are shown
in the chart opposite.

well as the material considerations. In addition,
the program must be able to plan ahead,
determining the best sequence of moves from any
given position. It is here that chess programs can
excel, using the speed of the computer to examine
a large number of possible moves in a very short
time. Bigs |
Most chess programs use a ‘brute force’

technique, searching through as many moves as
- possible in the time allowed. The time allotted for
each move is determined by selecting a ‘level’ of
play at the beginning of each game, with each level
giving a different time span during which the
computer must make a move. These periods vary
from a few seconds to several hours, and the
longer a computer is allowed to search, the more
likely it is to find the best line of attack for the
current position.

At each move, the computer determines -
whether or not the King is in check, and then
considers whether pieces are likely to be gained or
lost, whether key squares can be occupied, and
many other similar questions. The more criteria
the program examines, the better the result will be.
The final question is to discover if the opponent’s
King may be forced into a checkmate position.

In games between computers and humans,
computers have a distinct advantage in speed and
range of search — yet an excellent human player
should always defeat an excellent computer chess

Features
All competent chess programs will include the ability
to castle, promote a pawn to a Queen, and capture en
passant, and will understand draw and stalemate
situations. Some of these programs have very
interesting additional features. Sargon Ill is the
program with most extras, and includes a second disk
that contains 107 classic chess matches and 45 chess
problems. The documentation is superb, with 75
pages in a loose-leaf notebook. Of course, Sargon'lll
was running on an Apple lle, and was three times as
expensive as the other programs. For the money,
Cyrus IS Chess and Colossus also offer some very
nice features, as you can see from the table.

program because of the human’s ability to see and
create new openings and positions. Computers
play superb tactical chess, but, even among human
chess masters, a good positional player should
beat a good tactical player. Computer chess
programmers have focused on tactics because, for
a computer, tactical play involves simple number-
ccunching. If a human opponent makes an
unconventional move, the computer will often
miss the best response. For this reason, many chess
programs have difficulty in dealing with ‘quiet’
positions, where none of the available moves offer
a particular tactical advantage. In these situations,
which often occur during the endgame, the
program will often simply shuffle pieces around
instead of taking the opportunity to plan ahead.
A recently developed style of programming

involves ‘selective search’. Using this technique,
the computer mimics a human player by looking
in greater depth at a smaller number of possible
moves. Hegener and Glaser, in Germany, have
utilised the selective search technique in their
Mephisto III program, which looks at every
possible move for the first two ply (a ‘ply’ is one
move by one player), then narrows the search and
examines a smaller range of moves in depth.
Mephisto III also makes an attempt to distinguish
between quiet and tactical positions. Techniques
of this type should eventually result in computers
becoming a real challenge to human players.

Conclusion
In terms of playability, Cyrus IS Chess and Colossus
are easiest to use because moves are entered by using
the cursor, while Sargon III and Grand Master require
you to enter the moves in algebraic notation, such as
E2-E4 for pawn to King 4. Colossus and Sargon have
the best screen displays. Grand Master offers
excellent chess for a very low price.

The Heart Vs The Head
The ability to examine every position up to nine moves ahead
almost guarantees chess programs a tactical supremacy over
humans. The human chess master’s special skill is in selecting a
few crucial moves on which to concentrate enormous analytical -
skill up to 30 moves ahead.

Here, Moritz (black) plays Emmerich (white) in 1922; the
position is featured in the film ‘Night Moves’. Black can mate by |
sacrificing his Queen, and then making three very elegant knight
moves: most human chess players would unhesitatingly prefer this
sequence over all others. Moritz himself missed it and bitterly 4
regretted his oversight. All our packages found mate, but none of
them suggested the Knight moves ploy, although some of them
must have considered it. The computer’s inability to perceive that
ending as the ‘best’ seems to offer humans their only possible
defence gainst the ch

H5—H2 ch

2 GI—H2 &5—G4 ch

3 H2—G1 F4—H3 ch

This is the knight moves sequence

4 G1 fh G4—H2 mate

SVANCED COURSE 303

WVHONIAOY

eo eS

eek
rd | cS

soos tneereeene nes nerenenes

ic
mete

Paes ee | 4 =,

, te, I ! “ ’ * he Cand

seevecsteseverwapreseaneonssentonsensers ters sscsnas tosses SIbare,
esis, at

oP oe, eat carveresetersteres centers sep eceneescasssereeen ee on anes ee pne4 ences: 3 on sarrsseseervsrstereseeernenescmenscerarecersesnensennessnsosseesesoemsnsscenecenenonesstltece oe

NT SRESP SORES Raph eta ete het ee EL EON:

Printer Artistry |
These print-outs show the
kind of graphics that can be
produced by certain dot
matrix printers. Each pin on
the print head is controlled
individually, and it is possible
to produce some complex
and satisfying patterns.
Details on how to do this will
be given in future instalments
of the course. These images
were created using Paintbox
from Print’n’ Plotter Products

OING DOTTY
acc ee a te ee ee ee) eae

eceaeerseyesnesneeseraenesemenen
mm coogi aap

Geeeve ss

+ apf"3?3"
ee

ee

Most home computer owners eventually
decide that the one thing they need to make
life complete is a printer. Even if it is used
solely for listings, a printer makes a
programmer’s tasks much simpler —
debugging a program is considerably easier
if ‘hard copy’ is available — and a printer is
obviously a necessity for word processing.

An inexperienced computer owner is likely to be
bewildered by the choice of printers available, as
there are almost as many different machines as
there are makes of home computer. A decision
must first be made as to the type of printer
required; this will usually be either a dot matrix or
daisy wheel model, although there are other
varieties, such as thermal or ink-jet printers. A
daisy wheel model produces the highest quality
results (generally at a correspondingly high price)
and is therefore best for word processing; whereas
a dot matrix printer is usually cheaper, faster in
operation and ideal for listings and general
programming tasks. Here, we will concentrate on
dot matrix printers. :

_ A dot matrix printer may be purchased for less

304 THE HOME COMPUTER ADVANCED COURSE

iiiidciii am icomMAM TERA RR gee, oe
Peat cn

wnggen ea ua oy

Ry 5H A A

“7 PA RAR RE AE OSH 3

GG 5 PA EN se fe LT

ES ae NTT

ne

than £200, although very sophisticated models
can cost £1,000 or more. Important points to
consider are the printing speed and the quality of
the text produced; more expensive models have
extra features such as proportional spacing (i.e.
narrow characters such as ‘i’ are allocated less
space than wide ones like ‘m’) and different
character sets. In general, you get what you pay for
— you must decide whether such features are
worth the extra money. |

Printing speed is important as use of the printer
‘ties up’ the computer because text must be stored
in the computer’s memory until the printer is ready
for it. Therefore, the computer cannot be used for
other tasks while printing is taking place. Printer
speeds are quoted as “characters per second’ (cps),
so whereas an expensive model running at 200 cps
might take one minute to print out a long program
listing, a cheaper model with a print speed of 30
cps would take more than six minutes to produce
the same listing — and during that six minutes the
computer cannot be used for any other tasks. This
problem may be overcome by using a printer
buffer. This is simply a circuit board containing
RAM chips, which is connected between the
printer and the computer and stores the data while

ft

the printer works on it, thus freeing the computer
for other operations. More expensive printers
have large buffers built in.

The print speeds quoted by the manufacturers
should, however, be taken with a pinch of salt. As
with car fuel consumption figures, these are always
given for ideal conditions and often bear little
resemblance to real life! Printer speeds are
calculated for the production of a single line of text
composed of the same character. Normal text,
with its different characters, spaces, line feeds and
carriage returns, slows down the print head. Thus,
a printer with a quoted speed of 160 cps would
probably average only about 100 cps when
printing out a program listing.

The quality of the characters produced on the
paper varies considerably from printer to printer.
It depends mainly on how many pins are used in
the print head — the mechanism that forms the
characters on the paper. The cheapest models use
just seven pins in the print head, whereas the more
expensive machines can have 16 or more. On the
Commodore. printer, which has only seven pins,
the characters are produced as a seven by six
matrix of dots. The Canon PW1080, however,
uses a 16 by 23 matrix to produce its characters.
Consequently, the individual dots cannot be seen
and the characters have a clearly defined, ‘solid’
appearance. For program listings, the quality of
the print is not really important; whereas for word
processing it obviously is.
A dot matrix printer is really a dedicated

microcomputer; it uses ROM and RAM memory
chips and has a microprocessor. As such, it can be
programmed to do other things apart from
printing text. This is done by sending special
control codes from your micro to the printer, or by ©
setting small switches — known as DIP (Dual In-
line Package) switches — inside the printer case.
For example, the standard ASCII character set,
which is stored in the printer’s memory, can be

altered to suit different alphabets. In Britain, the
hash sign (#) is often changed to print as a pound
sign (£). |

Other special effects include double-width
characters, emphasised (darker, heavier) text, and
different line spacings. The Epson FX80 is one of
the more versatile dot matrix printers and has over
70 of these printing features. It can print in italic
characters, underline text automatically and
allows proportional spacing.

The Epson range of printers has become
something of an ‘industry standard’. This means:
that much of the software that requires a printer —
word processing packages, invoice programs, etc.
— assumes you have an Epson. This is an
important point, for the different makes of printer
are by no means compatible.

Other considerations may well influence the
choice of printer; certainly, reliability is an
important factor. A cheap £200 printer might be
all right for producing the occasional listing but it is

unlikely to stand up to the continual daily use that
an office printer would suffer. Similarly, noise is
one factor that is often overlooked: if you like to
burn the midnight oil, some printers can be
positively deafening at one o’clock in the morning.
Does it have a friction feed? All dot matrix
printers come with a ‘tractor’ feed, which will work
only with continuous paper — the type with
sprocket holes up the sides. If single sheets of
paper must be printed, Howeyel, a friction feed is is
necessary.

Finally, perhaps the most important factor —
will it work with your micro? Most dot matrix
printers come with either a Centronics parallel
socket or an RS232 serial interface. If a printer
does not have the right one for your micro, then
sometimes an alternative. interface can be fitted,
although this can add over £50 to the price. Even
with the right interface, the correct cable is needed
to connect the printer to the computer.

ERE
|_| | @6866
‘Lee |e
| ee ||| 6
~~ SS sees
|| |

THE HOME COMPUTER ADVANCED COURSE 305

Pinprick Details
These print samples. show
the difference in quality
between several dot matrix
printers. The main reason for
the variation is the number of
‘pins’ in the print head; those
with the most pins have the
most detailed characters. The
first sample uses only seven
pins, and can't produce the
‘tails’ of the letters g, p, q and
y below the line. It is said to
lack ‘true descenders:

ann
| ee
ee
CCl
ett

aa

KEVIN JONES.

IN FORMATION
The spreadsheet was one of the first major
applications for microcomputers. Its use in
the home, however, has been hampered by

_ the assumption that it is strictly for business
use. But the spreadsheet has a range of

useful possibilities, serving as an ‘ideas
generator’ as well as a valuable aid in the
collation and FEUER oF information. :

Tek a mere ‘processor. or inne ‘the
spreadsheet has many facilities that are rarely
explored by its users. Most people with a word
processing system seldom use its more
sophisticated commands, while database
programs tend to be used as file management and
index systems to the exclusion of their data
processing abilities. The majority of home micro
owners, however, don’t own a _ spreadsheet
program and can’t see the need for one. Many
believe they would find such a program boring and
of little practical use, and are generally intimidated
by its association with financial and business uses.
This view of spreadsheets underestimates the
importance of financial management in the home,
and overlooks the fact that spreadsheets are
simply ideas processors that have become stuck

_ with the accountancy image. In fact, as word
processing is to text, spreadsheets can ve to
concepts. |
A spreadsheet is really a text editor and

calculator in one. It is called a spreadsheet because
it is divided into rows and columns like an
accounting spreadsheet, with data shown in cells,
or boxes. These are like the cells of a paper
spreadsheet in that they can be used in anumber of
different ways: text can be entered into a cell
where it will remain on display, numerical data can
be entered for display and calculation, or
mathematical formulae operating on the contents
of other cells can be entered. Once some formulae
are in place, the spreadsheet becomes a user-
generated program waiting for input. Whenever
new data — text, numeric, or algebraic — is
entered, all the formulae cells are recalculated in
turn, thus keeping the spreadsheet constantly up
to date with data input. The spreadsheet can,
therefore, be used for simple screen/printer layout
tasks, making it easy to format and to print not

- only calculations you could do yourself (if they
‘weren't so tedious), but calculations you would
never otherwise have thought of. — |

In many cases, using a spreadsheet will help to
reveal needs the user was unaware of — such as
keeping inventories, analysing sports results,
designing forms, producing timed synchronisation

306 THE HOME COMPUTER ADVANCED COURSE

charts for theatre sound and lighting cues,
generating tax returns, deciding whether to rent or
buy a television, and so on. All these things could
be programmed by someone with a working
knowledge of BAsic, but each would take hours to
develop, and most of this time would be spent on
working out and debugging the endless PRINT TAB,
PRINT AT, and INPUT commands needed for
formatting the screen display. The great advantage
of the spreadsheet is that you format the display as
you work out the relationships between your
variables. This is done as naturally as you would |
lay out a sheet of paper, by writing the text, data
and the results of calculations wherever you want

_ them to be on the display.
Spreadsheets support a variety of commands to

make layout easy: you can copy, move or delete
blocks of cells, insert and delete rows and columns,
and define the format of a cell or block in terms of
size, justification (alignment with other items in
the same column), and position of the decimal
point. These are exactly the details that are so
difficult to handle in most dialects of BAsic, but
which are vital to the appearance and ease of use of
any report.

Analogous to these formatting facilities are the
calculating functions. With a single command you
can calculate the mean value of arow or column of —
data, count the non-zero entries in a table, work

‘out the sum of an array of values, find the
maximum and minimum values in a list, and use
these facilities in mathematical expressions with
more familiar operators and functions such as °+-’
and ‘/’, SQR and ABS. Not all spreadsheets support
all of these facilities, however. The options offered
depend upon the available computer memory and
how much you are prepared to pay for the
program. Prices range from around £5 to several
hundred pounds.

Perhaps the most useful single Seidsiect
command is REPLICATE. Using this allows a
calculation or value typed into one cell to be
‘duplicated in any number of other cells, so that the
setting-up of accumulating tables of data — such
as mortgage interest from month to month, or
household spending week by week — can be
achieved in a dozen key-strokes. Spreadsheet
programming very quickly becomes a natural
extension of arithmetic asic, enabling
complicated mathematical expressions to be
expressed in a more straightforward way than
BASIC allows.

Completed spreadsheets can be SAVEd to and
LOADed from tape and disk, and many versions
offer the option of saving just the text and data ina
file format that can be used by word processing

fA

Format

The FORMAT command has
been used to set the width of
column D, left-justify all text
cells, and display all numbers

ih eR

a |

6 i

7lAbdel

8iBaker

9iCharles

10!Dogger

lllEezy

lZiFox

151Georqge

141

13S!

161

MEAN

Repeating Text
A single star typed into this
cell fills the whole row

0 two decimal places

G-.. ta

Hist

76. 00

46. O00

48. O0

935.00

63.00

88. 00

Autocalc
Once the formula for one cell
is entered, it can be copied

Copy
Any block of cells can be
copied to. any part of the
sheet by the COPY command

Bal

through the REPEAT TEXT automatically to other cells
feature : using the REPLICATE

command To compare the performance
of his pupils in different
subjects, the teacher wants to
scale all the exam results so
that the mean mark in each.
subject is the same. He has to
experiment with different
scaling factors for each:
subject, calculating and
recalculating the marks, which
is tedious error-prone work
that a spreadsheet could do in:
minutes. On the computer
spreadsheet everything except
the actual marks is calculated
automatically; changing the
scaling factor, for example,
produces a complete new
column of scaled results for
that subject in seconds

and database software. This enables the results of
calculations and projections to be incorporated en
bloc into a text or data file, and is a valuable step
towards integrated software. This usually applies
only to the more expensive packages.

Given a reasonable set of commands, a
spreadsheet program is limited mainly by the

user’s imagination or the size of computer memory
available. The programs themselves are usually
extensive, and applications with large tables and
sophisticated data processing facilities can quickly
fill the rest of memory. Complicated calculations,
moreover, can appreciably slow the program’s
calculating response.

xe eK K Ke Kk &

3

¥ yi

Scaling Factor
Multiplied by an actual mark
to produce a corresponding
scaled mark

Dade SOLACE AR

Maths
65.25 "47.30 ° 55.48

Calculated by the
AVERAGE (cell #1 :cell#2)
command

THE HOME COMPUTER ADVANCED COURSE 307
'

The display screen of a
Commodore 64 after it has

heen cold started

COLD START
A cold startis what happens when you switch your

computer on, no matter whether it is one second

or several days since it was last in use. The

individual circuits and chips will take an

appreciable time (though still measured in terms

of a fraction of a second) to stabilise, during which
their behaviour is totally unpredictable.

Therefore, a simple circuit (consisting of little

more than a resistor and a capacitor) is
incorporated, which is sure to produce a pulse

perhaps a tenth of a second after the machine is

turned on. The output of this circuit is connected

to the reset line of the microprocessor, which will

_ have stabilised by the time the pulse is applied. |

A signal on this line always causes the micro to

abandon whatever it is doing (which will be

garbage) and go to a piece of code in a

predetermined area of ROM, called the cold start

routine. This routine usually checks through all

areas of RAM to establish how much is available

and that it is functioning correctly. It will then jump

to the operating system, or boot it in from disk to

RAM. A warm start, by contrast, is what happens

when you press the Reset button on your
computer. The warm start routine doesn’t perform

the memory checks, as this would obliterate the

contents. Instead, it merely resets the

microprocessor registers and jumps back to the

operating system.

COMMAND LANGUAGE
We have already explained the difference between

a package that is menu-driven and one that is

command-driven: the former presents you with a

list of options that can be selected with a single

key-press, while the latter requires you to type in a

command word at the bottom of the screen for
each new action. The menu system has advantages
for the newcomer to computing, but a command-
driven program may in addition feature a
command language. =>
A command language gives the user the ability

to combine several individual commands into a
single operation. It is common in database
applications to find yourself repeating sequences

like this: GET the next record, EXTRACT the TOTAL

308 THE HOME COMPUTER ADVANCED COURSE

field, MULTIPLY this by the DISCOUNT rate, UPDATE
the record with the new value, and STORE the

record back in the file. A command language —
enables such a sequence to be activated by a single

command such as MODIFY.
The more sophisticated database packages, of

which Ashton-Tate’s dBase II is the best example,

take this a stage further and allow whole

applications to be written in the command.

language, complete with conditional statements

and subroutines. The end result is really a

programming language just like BASIC Or PASCAL, _

but using more sophisticated commands. Thus

writing an information retrieval. application in

dBase II language will require considerably less

work than writing it in a conventional language.

COMPARATOR
A comparatoris an electronic circuit featuring two

analogue voltage inputs and a single output. Its

function is to compare the two inputs so that the

output will be in one predetermined state if A is

greater than B, and in another state if B is greater _

than A.)

One method of building an analogue-to-digital

converter is to use a digital-to-analogue circuit

(which is much simpler to construct) in

conjunction with a comparator. The D/A is

connected between the computer and one of the
comparator’s inputs, with the analogue signal to be

measured connected to the other. The computer

then generates a counting sequence in binary,

which causes a gradually rising analogue voltage at

the output of the D/A. When the computer-

generated voltage reaches the level of the signal to

be measured, the output of the comparator will
change, indicating to the computer that its current

binary value is the digital equivalent of the

analogue signal.

COMPILER
A computer program that translates a program

written in a high-level language (called the source

code) into a lower-level language (called the

object code) is called a compiler. At the end of the

compiling operation, the user’s program will exist

in two forms: a source file and an object file.

Programs written using a compiler are much

faster than programs written with the Basic that

comes with home computers. This is because most

versions of BASIC are interpreters rather than

compilers. Interpreters are languages that convert

each program instruction into machine code, one

at a time, while the program is running. This

means instructions inside a loop will be repeatedly

converted into machine code, which wastes time.

Compilers, on the other hand, convert all

instructions into machine code before the program

is used and store them. Thus, the program wastes
none of its time converting program instructions

into machine code. Compilers are rarely used on

home computers because they are complicated

and need' lots of memory. The few that are

available tend to be limited in what they can do.

CHRIS STEVENS

COLOUR GENIE/HARDWARE

WISH FULFILMENT

The Eaca Colour Genie is a large, sturdy
machine that is designed for home use. Its
robust casing contains many features that
are unusual in machines costing less than
£200. These include an internal power
supply, an on/off switch with indicator
LED, a built-in aerial lead UNG. several
peripheral interfaces.

Based around the popular Z80 microprocessor,
the Colour Genie boasts a_ typewriter-style
keyboard with 62 keys. These include four
function keys, two Resets (which must be pressed
simultaneously) and a Mode Select key, which
allows pre-defined graphic characters to be
obtained from the keyboard.
The machine has 32 Kbytes of memory. Of this,

two Kbytes are set aside for system use, and high
resolution graphics use a further four Kbytes. The
16 Kbytes of ROM contain an extended version of
Microsoft BAsic, which offers none of the
structured programming features found in more
recent dialects of BAsic. However, it does allow
integer variables, single and double precision
variables, multi-dimensional arrays of any
variable type, and extensive string-handling
facilities. It includes many useful commands to
handle sound and high resolution graphics.

Sound facilities are relatively sophisticated,
offering three channels (allowing chords to be
played), and providing output through the
television set. Two BAsic commands control sound
generation — PLAY gives a pre-defined sound
similar to a*glockenspiel, while SOUND allows
other noises to be generated.

Although extensive and powerful, the Calon
Genie’s graphics facilities are now somewhat
outdated. The screen is considered as two ‘pages’
(really two different areas of screen memory), one
of which stores and displays text, graphics
character blocks and user-defined graphics
characters, while the other page is used for the
display of high resolution graphics. In text mode,
the Genie can display up to 25 lines of 40
characters. In graphics mode, the display size is
160 X 102 pixels which is hardly ‘high
resolution’ by current standards.

GRAPHICS MANIPULATION
The Mode Select key accesses the high resolution
page, setting aside 4 Kbytes of memory. The BASIC
features numerous commands for graphics
manipulation — you may draw lines, fill areas with
solid blocks of colour and define, draw and erase
shapes. When incorporated into a BASIC program,
the command FGR displays the graphics page, but
the computer will automatically revert to text

Bashtful Genie
One computer that has never
achieved the fame of the
Spectrum or the Commodore
64 is the Colour Genie, even
though it’s been around for just
as long. All the same, it has a
small but dedicated following.
The machine has 32 Kbytes of
memory and unusual joysticks
— they come in a matched pair
with built-in number pads and
their own holder — for £50

THE HOME COMPUTER ADVANCED COURSE 309

HARDWARE/COLOUR CENIE

mode at the end of the program. The BAsic also
includes commands to clear the graphics page
(FCLS), and alter background (FILL) and
foreground (FCOLOR) colours. This system is
clumsier than the single-page arrangement
adopted by most new machines, but it does allow
each pixel to be individually coloured (unlike the
Spectrum, for example, which has a higher
resolution but limits the colours that may be
displayed within each eight by eight pixel block).
Most arcade-type software uses the text screen for
speed, with user-defined characters to give a high
resolution effect.

The screen display is clear and ends but the
character set used makes text a little difficult to
read. The Genie offers eight colours — white, red,
green, yellow, cyan, magenta, blue and orange —
all of which may be displayed on the text screen at
the same time. High resolution graphics restrict
the user to four colours (red, blue, green and
black) but there is an additional command (BGRD)
to set the graphics page background to pink.

Several interfaces are included: an RS232 port
for printers and modems; a 50-way expansion
port, which is used for connecting disk drives; a
composite video output; an audio output; a light
pen socket and a joystick port. Available
peripherals include joysticks, a Centronics printer
interface, a Prestel cartridge (which requires a
modem) and disk drives. The dual joysticks
feature built-in keypads but are difficult to use — a
lot of pressure is needed to make them respond,
and the joysticks do not return to the central
‘neutral’ position when the pressure is released.
Eaca, the company that makes the Colour Genie,
does not offer a disk drive for the machine. One is
available thanks to a British company that offers
its own disk drive using an operating system called
QDOS, similar to Tandy’s TRS-DOS.
A recording-level meter is built into the case to

counter cassette loading problems; the user simply
adjusts the volume until the needle is centred, and
cassette tapes should then load easily. In addition,

‘data stabiliser’ may be fitted between the
cassette player and the Genie’s cassette lead; this
‘cleans’ the signal and also aids in tape operation.

The Colour Genie is supplied with two manuals
— a beginner’s guide and a basic manual. Both are
clearly written but are lacking in detail, and neither

310 THE HOME COMPUTER ADVANCED COURSE

Second 16K Of Memory First 16K Of Memory
This is on a separate circuit This is part of the main

board because the Colour circuit board
Genie was originally sold as a
16K machine with the option
of a further 16K add-on. This
is now included as standard

Composite Video Outp
This allows a monitor t

used

Sound Output
aan er

TV Modulator
This produces a signal for
ordinary TV sets. A cable is
permanently attached to it

On/Off Switch

Mains Transformer 16K Of ROM |

This is built into the The ROM memory is spread

computer over four ROM chips

: COLOUR GENIE / HARDWARE

has an index. In fact, the basic manual doesn’t even
have a contents page. For more advanced users, a

eee é, technical manual is available at extra cost.
volume level when oading Despite its old-fashioned appearance, the
from tape Colour Genie appears to offer good value for

money, It falls firmly into the “home user’ category,
and has little to offer the scientific or business user.
The robust construction, good sound capabilities,
full range of peripherals and fairly standard BAsIc
should make this machine especially attractive to
the beginner.

Martian Raider

1Tup 89590999

50-Way Expansion Port
This allows for extra add-ons

Cassette Port

RS232 Printer Port

Light Pen Socket

IAN McKINNELL

Joystick Port Software Choice

For the pair of Genie joysticks The availability of software
| for the Colour Genie is fairly

limited, but the quality of
what can be obtained is
generally very good. Most of
the software is games, and
these are often translated
versions of games produced
for the better known
machines

Programmable Sound
Generator Chip

Display Chip
The display is controlled by a
6845 chip

280 Microprocessor

CHRIS STEVENS

THE HOME COMPUTER ADVANCED COURSE 311

> PROGRAMMING PROJECTS/DESERT TRUCKER GAME

Not all” games. are oul shooting aliens.
Some, such as the program we present here,
demand logical thinking. Trying to drive a
truck across a desert is not easy when it can’t
carry enough fuel to get it all the way.

~ Solving the problem requires a_ little
ome actiation or even another program!

Our game is set in a desert 1,000 kilometres wide.
Every hundred kilometres or thereabouts is a_
staging post where fuel tanks may be stored. Back
at base, you've as many petrol tanks as you could
possibly need, each one large enough to fuel the
truck from one stage to the next. The journey
across the desert would be quite simple apart from
one thing; the truck has room for a maximum of —

- eight tanks at any one time. Therefore, to make it
across the desert, you must build up supplies of
fuel at various points on your route, gang back
and forth between them. ;
Obviously, the first objective of the game is to

make sure that you don’t run out of petrol — it's a
long walk back to base and the desert isn’t a place _
for a pleasant stroll. Secondly, you must complete
the journey travelling the shortest distance and
using the fewest tanks possible. You should find
this relatively easy to solve with the prog setup
for eight tanks.

However, we can alter the game to make the
problem a little more muind-stretching. What
happens, for example, if you can carry only four or
six tanks at a time? To investigate these variations,
you must alter the value of the variable M in line 60
and try the problem again. You should discover
that you are using the same technique but that the
intervals between your fuel dumps and the
number of journeys made are altered. Can you
devise an algorithm that is certain to see you safely _

3 en Max « AK.
een 40"

eats Ren ae a. ee

Tie

aoe ") THEN ie 260

="D" “OR

312 THE HOME COMPUTER ADVANCED COURSE
a p pe : a :

technique for

across the desert every time? Such an algorithm
could be the basis for a progr al that solves this. .
particular problem.

Our puzzle demonstrates an_ invaluable
solving problems in the

development of a program. You must first
experiment with the information given, try lots of ©
worked examples and ‘then, if all goes well,
discover an emerging pattern. From this you can
devise an algorithm and then come up with a
program. If you want to develop our Desert
Trucker game, you could add graphics and other
refinements, introducing difficulties like needing
to carry water as well as fuel. :

| Basic Flavours
This program is written in Microsoft BASIC, so
should run unchanged on most machines with a
40 x 25 screen display. Spectrum owners must
insert LET before all assignment statements.

CHRS(26): Replace by CLS on Spectrum, Oric-1,
Atmos, Dragon and BBC; and by CHRS(147) on
Commodore 64 and Vic-20.

MIDS(ST RS(A(1),2)): Replace by STRS(A(1)) on the
Spectrum and any machine on which the command
PRINT LEN(STRS(2)) produces the result 1.

THEN 1260 & THEN 1300: Change to THEN GOTO
1260 & THEN GOTO 1300 on the Spectrum.

AO

aos N=N+1? yee and
ia) g=S-1: See

= 1) b") en
n OR AS=

EN i

TO

T30 in
19 41¢ InT"PL ease ery) 298
ia) 1 =] Q " a) FR

eM DroP ce many "8, THEN PRINTS
a5) REM UT How FR At. 18)

zoo PRINT! ae ac PINT iar ©
70 TF Ar 10
1270 is 260) eqT=T-At gato } nepease

“e macs) acs) * * pank A RINT PRINT ©
1289 vem Fick Pp wHow many OR Ao THEN F Mer tanks an

at RINT? IN ie ad PINT (A) e yy room Oe =00) ‘ : . a es a

be 1F AG) 300 is

ADRIAN MORGAN

MINESHAFT MANIA

Manic Miner, written by Matthew Smith,
has achieved cult status in the world of
computer games. Its combination of quirky
humour and off-beat graphics proved an
instant winner, and its central character,
Miner Willy, looks set to star in a range of
follow-up games

Manic Miner, available on the 48 Kbytes ZX
Spectrum and the
fundamentally a very simple game that is based on
an earlier best-seller called Kong. The object of
that game was to climb up ladders and branches,
all the while avoiding obstacles, in an attempt to
rescue the distressed damsel held captive by the
Great Ape. In Manic Miner, you take the role of
Miner Willy, a prospector from that well-known
mining centre, Surbiton. Willy stumbles upon a
forgotten mineshaft in which a lost civilisation
mined gold and other valuables. Unfortunately,
the mine’s former inhabitants forgot to disable the
Manic Mining Robots, thus making the job of
treasure retrieval extremely difficult.

There are 20 caverns in the mine, and in each of
these there are four keys that must be procured
before Willy can unlock the door leading to the
next stage. Each cave has a number of different
ledges onto which Willy must jump in order to
reach the keys. Some of these ledges are rather
weak (presumably with age) and give way as Willy
reaches them. The caves are heralded by phrases
like ‘Eugene's Lair’ (a reference to rival whizz-kid
programmer Eugene Evans of Imagine), ‘Miner
Willy Meets the King Beast’, ‘Attack of the Mutant
Telephones’ (another ‘in-joke’, this time directed
at programmer Jeff Minter’s obsession with
mutant llamas) and ‘Skylab Landing Bay’. All of
the caverns are inhabited by numerous alien >

Commodore 64, is_

beings whose very touch is instant death. Even the
plants are lethal.

You help Willy to avoid all these problems with
three simple commands: ‘Left’, ‘Right’ and ‘Jump’.
This is part of the game’s attraction — the
simplicity of the controls means that there is no
long learning period, and you may select the keys
you feel most comfortable with.

Willy has three lives, and in each incarnation he .
has a limited supply of air, indicated by an on-
screen meter. As the loss of the third life takes
Willy back to Cave One, the game can get very
frustrating, and it is hardly surprising that some —
people have managed to rig the action so that they
can start at any chosen cavern.

The Commodore translation is almost an exact
copy of the Spectrum version and fails to take
advantage of the 64’s more versatile sound
commands and higher resolution graphics. The
playing area on the 64 has been made
considerably smaller than the available screen size,
so that it exactly matches the Spectrum version.

But both versions are undeniably great fun to
play. The pace of the game and the difficulty of the -
problems posed have been carefully worked out,
making it extremely addictive. And Matthew
Smith has now produced a sequel, Jet Set Willy,
which is rapidly creating a cult of its own |

Manic Miner on the Commodore 64

THE HOME COMPUTER ADVANCED COURSE 313

Going Underground
The weird and wonderful
objects that are to be found in
Manic Miner's underworld
have contributed to the
game’s cult status. Seasoned
players often boast about the
more unusual things they
discover in the caverns

TAN McKINNELL

KEVIN JONES

RUN SILENT, RUN DEEP
At last we can apply the finishing touches to
our Subhunter game. We set up the routines
that create an explosion when a depth
charge hits a submarine, and explain the end
of game procedure.

In the penultimate instalment of the course, we
discovered how easy it is to detect collisions
between sprites using a sprite collision register,
V+30. When this happens, the Hit subroutine
(starting at line 5000) has three tasks to perform.
First of all, it must cause an explosion at the point
on the screen where the two sprites collided, and
then it must increase the player’s score by the value
of the sub, which is calculated from its speed (DX)
and its depth (Y3). Finally, it must reset the co-
ordinates for the next sub to start moving across
the screen. Let’s look at the code for the Hit
subroutine (lines 5000-5250) in more detail.

Line 5010 POKEs a zero into the collision register
V+30. to clear it: Commodore claims the sprite
collision register clears itself once two sprites have
passed over each other and are no longer in
collision. Experience, however, shows that the
register does not always clear itself quickly
enough, causing unexpected effects such as
explosions occurring for no reason. The solution is
to clear the collision register manually after a
collision. Once this has been done the explosion
sprite can be positioned and turned on.

Line 5030 gives the explosion an X co-ordinate
ten pixels to the right of that of the depth charge.
This slight shift positions the explosion more
centrally over the depth charges. As X2 takes its
value from the ship’s X co-ordinate (X0), its value
has an upper limit of 245. This means that the
maximum value of the explosion’s X co-ordinate is
255. The Y co-ordinate for the explosion is taken ©
directly from that of the submarine.

The explosion sprite has been designated as
sprite 1. Line 5040 sets bit 1 of the register V+21 to
one, turning on sprite 1 without disturbing the
values of other bits within the register. At this point
it is interesting to note that the explosion sprite will
appear on top, or in front of, the sub and depth
charge sprites. This is known as sprite priority, and
it is governed by the simple rule that lower
numbered sprites appear in front of higher
numbered ones. It is no accident that the explosion
was designated as sprite 1 and the depth charges
and sub were designated 2 and 3 respectively.

The colour of the explosion sprite is controlled
by location V+40 of the VIC chip. An interesting
effect can be obtained by rapidly changing the
colour of the explosion using a FOR... NEXT loop to
POKE in colour code numbers between 1 and 15.

314 THE HOME COMPUTER ADVANCED COURSE

An outer FOR... NEXT loop repeats this process 20
times (lines 5060-5100). When the explosion is
complete, all three sprites (explosion, depth
charges and submarine) must disappear from the
screen. Line 5130 turns sprites 1, 2 and 3 off.

As mentioned previously, the player’s score
needs updating using the subroutine beginning at
line 5500. As the score is to be increased by the
sub’s value (rather than decreased, as happens
when a sub reaches the right hand side of the
screen unscathed) the value of DS is set to one to
signal this. Finally, before another sub can travel
across the screen, its co-ordinates need to be reset
using the subroutine at 2500 and the sub sprite.
must be turned back on. In addition, the flag that
signals the dropping of a depth charge must be
reset to zero so that the player can start firing depth
charges again.

At the end of three minutes the program leaves
the main loop and jumps to line 400. When we
first discussed the use of the Commodore 64 timer
(see page 234) line 400 was a simple END
statement. The End of Game routine allows the
game to be replayed and the highest scores
recorded. The flowchart shows the tasks to be
incorporated into such a routine. Lines 400 to 660
of the program listing perform these tasks. Most of
the code. is self-explanatory, remembering that
CHRS(19) homes the cursor to the top left corner of
the screen and CHRS(144) causes subsequent
PRINTed letters to be coloured black,

In this short programming project for ‘the
Commodore 64 we have learned how to construct

simple animated game. In building up the
program we have covered all the main aspects of
programming this kind of game in BAsic. You may
well wish to add refinements of your own to the
program using the principles we have learned.
One way of extending the game to make it more
interesting would be to allow more activity on the
screen by incorporating the four unused sprites.

ay.

Subhunter - The Final Listing
10 R EM JERR BEBE HHH HAHA HH HHHHEE

SO REM 4% 64 PROGRAMMING PROJECT *x

7O REM FENG ERREE ERR R AREER AREER ERE

PO PORESS, 0: POKES6.4c:CLE:

REM

100

110

120

130

140

200

210

220

LOWER MEMIOP

V=S52d95 FL =O: SC=0

GOSUBIOOO: REM SCREEN SEIUF

GOSUBZOO0: REM SPRITE CREATION

GOSUB2500: REM SET SUB COORDS

Tis=" 000000"

REM *#%e MAIN LOOP EAH

REM Re TIMER AE

PRINICHRS (19); :PRINTIAB(14) CHRE (5S) ;

TIME "MIDS(1IS,3,2) °°: "RIGHIS(IIS, 2)

225 I[FVAL(TI®) >25° THEN GO0C; REM END GAME

2350 GET AS

240 IF Aw="2" FHEN XO=xXO-1.5°1F A0c 24

THENKO=24

250 IF AS="R" THEN SO=XOt1. SiIF AO 245

THENAD=245

2o0

REM

270

2e0

300

310

320

230

GOSU

340

330

260

GOTO

370

280

REM

270

800

410

420

430
440

450

$60

430

470

200

o10

660

LQ00

1010

1030

1040

1030

1060

1070

1090

1100

1iio

1120

1130

11350

1160

7orC

1170

2000

2020

2050

2090

2060

2020

2080

2100

2i1o

IF At="M" AND FL=0 THEN GOSUBSOOO:
SET UP DEPTH CHARGES
REM ¥*% MOVE SHIP ¥*
POKE V, xo
REM *¥% MOVE SUB *¥+%
MS=xS+Dx
REM¥*XIF SUB REACH EDGE OF SCREEN **
IF ¥3534640 THEN DS=-1:GOSUB5500:
B2500
H3=INT (X%3/256) :LS5=*3-256%HS
POKE V+6,L3
TE H3=1 THEN POKE Vti6. PEEK (V+ia) ORS:
380
POKE V+16,PEEK(V+16) AND247
IF FL=1 THEN GOSUBGO0O:
MOVE DEPTH CHARGE |
GOTO 200:REM RESTART MAIN LOOP
REM ¥*#*% END OF GAME CONDITIONS ****
REM *%% TURN OFF SPRITES ¥*
POKE V+zZ1i,0
REM ¥* RESET SUB & SHIP COORDS *¥*
“~O=160:G0SUB 2500
INPUT" ANOTHER GAME (Y/N) "i ANS.
TF ANS<>"Y" THENEND
REM ¥¥ RUBOUT MESSAGE **
PRINT CHRS(1@):REM HOME CURSOR
FOR I=1 Ta 120
PRINT" °3
NEXT 1
REM *¥*¥ SET HI SCORE ¥*
IF SCOHS THEN HS=ScC
PRINT CHRS(17) | CHR#(144) 5° SCORE O00":

PRINT CHRE(19);
PRINT TAB(26);CHR#(144); "HI SCORE";HS
REM %% RESET TIMER AND FLAG **
Tis="000000":FL=0
REM ¥*% TURN ON SUB & GHIP ¥*
POKE Vt21.9
GOTO2OO: REM RESTART LOOP
REM ¥¥#% SCREEN SETUP %#%%
PRINT CHR&#(147):REM CLEAR SCREEN
REM ** COLOUR SEA **
POKE S3281,14:POKE 55280,.6
FOR I=1264 TO 194%
POKE 1,160:POKE I[+54272.6
NEXT
REM %*% SEA BOTTOM **
FORI=1944 TO 2023
POKE 1,102:POKE 1+54272.9
NEXT
POKE 650,128:REM REPEAT KEYS
REM ee SCORE F%

PRINT CHRS(19) ;CHRS(id4); SCORE O00”

(16); HI SCORE 0007

RETURN

REM *¥¥*¥% SPRITE CREATION ¥***
REM ¥*¥ READ SHIP DATA ¥*
FOR I= 12266 [0 12350

RESD A:POKE I,A: NEXT |
REM ¥*¥ READ SUB DATA ¥*
FOR 1=12352 10 i24i4
READ A:POKE 1,A: NEXT
REM ¥% READ CHARGES DATA #*
FOR I = 12416 TO 12479

2120 READ A: PORE 1,8: MEAT

2180 REM ¥* READ EXPLOSION DATA **

‘2150 FOR | = i2480 [0 1lesa2

2160 READ A: PORE 1,8: NEXT

2180 REM ee SET POINIERS #%

21if0

4194
PURE 20490,192:POKE 2041,193:FPOKE 2092

COMMODORE 64 GRAPHICS/PROGRAMMING PROJECTS

2200 PORE2ZOGS, 125

2220 REM ee SET COLOURS 4%

2230 PORE Vts9,0:POKE Vtd0, 1°: PORE Vtd1,0

2280 PORE Vtd2,0

2260 REM ¥* SET INITIAL COORDS ¥*

2270 POKE Vt1,8S0:%0=160: REM SHIP COORDS

2280 PUKE Vte>, 1S: POKE Vtes,e

2500 REM e* TURN ON SPRITES O & S K*

2oi0 PORE Vi2l, =

2520 RETURN

2500 REM ¥***% RESET SUB COORDS *xx*x*

25i0 YS=LIOFINT (RND(TI) e105)

2520 POKE Vt7, 1S: PORE Vte,0

2550 AS=0; DA=RND (TL eStl

2540 PORE Vtis, 0

2oo0 RETURN

S000 PEM #X%* SETUP DEPTH CHARGES xx kx

3020 REM #% SET FLAG ¥*
S050 FL=1
SOSO REM *% SET COORDS €x
3060 ¥2=95:%2=x0
3070 POKE V+4,xX2:POKE V+5,72
3090 REM %*% TURN ON SPRITE 2 ¥%
3100 POKE V+21,PEEK(V+21)0R4
3110 RETURN
A000 REM *#%%* MOVE DEPTH CHARGE **%*
4020 REM %% DECREASE Y COORD ¥*
A050 Y2=Y2+2
4050 REM %% TEST SEA BTM & TURN OFF **
4060 IF Y2>Y3+25 OR Y2>216 THEN POKEV+21,
PEEK (V+21) AND251:FL=0
4070 POKE V+5,Y2
8070 REM ek [EST FOR HIT ON SUB €*

4100 IF PEEK (V+30)=12 THEN GOSUB 5000:
REM HIT ROUTINE
4110 RETURN
SOOO REM ¥4#*% HIT ROUTINE *%%%
S010 POKE V+30,0:REM CLR COLLISION REG.
5020 REM %* TURN ON EXPLOSION SPRITE ¥*
S030 POKE Vt2,*2+10:POKE V+3,Y3
SO40 POKE V+21,PEEK(V+21)0R2
S060 REM %% FLASH COLOURS **
S070 FOR I=1 TO 20
S080 FOR J=17T0 15
5090 POKE Vt40,J
S100 NEXT J:NEXT 1
5i20 REM %%* TURN OFF SPRITES 1,2 & S3k*
S130 POKE V+21,PEEK(V+21) AND241
SiSO REM ** UPDATE SCORE +
5160 DS=1:G0SUB 5500
5180 REM %* RESET SUB COORDS & FLAG ¥*
S190 FL=0:GOSUB 2500
S210 REM *% TURN SUB BACK ON %¥
S220 POKE Vt21,PEEK(V+21)0R8
5230 RETURN
S500 REM 4#%% UPDATE SCORE %#%++
5510 SC=SC+INT (Y3+Dx%30) XDS
5520 IF SC<O THEN 5SC=0
S530 PRINT CHR#(19);CHR#(1944)" SCORE";SC;
CHES (137); :

5540 RETURN
6000 REM *¥4% SHIP DATA *¥**
6010 DATAO,0,0,0,0,0,0.0,0
6020 DATAO,128,0,0,192.0,0,192,0
6050 DATAO,192,0,1, 224,0.1,224,0
6040 DATA13,224,0,3, 248,128,3.253,8
6050 DATA15, 254,16, 31, 255, 48, 255, 255, 255
6060 DATA127, 255, 254,63, 2595, 254, 31,255, 252
6070 DATAD,0,0,0,0,0,0,0,0
S100 REM **¥%*% EXPLOSION DATA ¥¥*%
6110 DATAO,0,0,0,9,0,0,16,0,0.8.0,4,16
6120 DATAO.3,2,464,1,56,128,12, 255.144
Gi30 DATA1, 236,40.5,151,0.11,121,0,1
6140 DATA1GS,0, 25, 214,96,0,236,98,6,24
6150 DATA152,3,96,.0,8,51.0,0,96,128,0
6140 DATA64.0,0.0,0,0,0,0
6170 DATAO,0,0,0,0,0,0,0,0,0,0,0,0,0,0
6200 REM ¥#%% DEPTH CHARGES DATA ¥x**%
G210 DATAO.0,0,0,0,0,0,0,0,0,0,0,0,0
6220 DATAO.0,0,32,0,0,32.0.0,42,0,0,32,0 be

6230 DATAO,0,0,0,0,0,0
6240 DATA2.0,0,2,0,0,2,0,0,2,0,0
46250 DATAO,0,0,0,0,0,0,0
6260 DATAO,0,0,0,0,0,0,0
6300 REM ¥#%% SUBMARINE DATA ¥#%%
6310 DATAOD.0,0,0,0,0,0,0,0,0,0,0
6220 DATAO,8,0,0,12,0,0,12.0
6330 DATAO, 12,0,0,28,0,0,60,0
6340 DATAO,126,0,199,255, 255
6550 DATA239, 255, 255,127, 255,255
6360 DATAZ5SS, 255, 2294; 19?, 255, 454

6570 DATAL, 0,0, Q, 0. 0,9,9,0,9,0,0,0,0,0

|
00000000

Here then is the final listing
for our Subhunter program
together with a table of the
key variables used in it. The
listing contains many REM
statements to aid
understanding. These may be
left out when typing the
program into your own
computer, but be careful that
you do not delete a REM line
that is required by another
part of the program. For
example, you may choose to
delete the REM at line 400,
but this line number is used
as part of a GOTO statement
in line 225. Deleting line 400
entirely will cause an
‘UNDEF’D STATEMENT
ERROR AT LINE 225’
message to appear and the
program will crash. The best
way to avoid this is to leave
out only those REMs that
appear at the end of a line
and those lines that use
colons (:) to space out the
code.

THE HOME COMPUTER ADVANCED COURSE 315

eeu

|p RR RE SS SASS a i a

er eee sees earner eee

We conclude this series of machine code
tutorials with a brief study of unsigned
binary division and the use of operating
system ROM routines in’ Assembly
language screen display programming. In a
summary of this introductory section of the
course, we review the major themes and
topics — from BASIC to branching, from
arrays to assemblers. —

Just as we used the manual long multiplication
method as an algorithm for binary multiplication
(see page 298), so the manual long division
method is a model for binary division. Consider
this binary long division:

00001110 r00 quotient
1011)10011010 dividend

-1011 subtract divisor
10000
-1011 subtract divisor

1011
-1011 subtract divisor

00 no remainder

The essence of the method is the repeated
subtraction of the divisor from the high order bits
of the dividend. Depending on the result of this
subtraction, a zero or a one is shifted into the
quotient. The remainder is the result of the last
subtraction of a divisor. |

The various ways in which this algorithm may
be implemented in Assembly language are not as
apparent as they were for multiplication.
However, as before, the Z80 version uses the
power and flexibility of its 16-bit registers, while
the 6502 must fetch and carry eight bits at a time.
The divisor is in the address labelled DIVSR, the
dividend in DVDND, the quotient in QUOT, and the
remainder in RMNDR. The program in Z80 and
6502 Assembly language is given.

Notice in both cases that when the divisor is
subtracted from the partial dividend with a
negative result, the dividend must be restored by
adding the divisor back in again. The 6502 version
is noteworthy for its treatment of the processor
status register after the divisor subtraction: the
carry flag must be rotated into the quotient, but its
state must also be preserved to indicate the result
of the subtraction. Consequently, the PSR is
pushed onto the stack before the rotation, and
pulled off it afterwards, thus restoring the carry to
its immediate post-subtraction state.
We have now considered the four rules of

arithmetic — this is plainly worth doing as a

316 THE HOME COMPUTER ADVANCED COURSE

programming exercise for the insight it brings to
machine processes, but inventing all the various
combinations of single- and multiple-byte
arithmetic is unnecessary, given that
programmers have been writing these routines in
textbooks and magazines for years. When the
need arises for variations of the routines that we
have developed, they will be supplied or set as
exercises.

SCREEN OUTPUT
So far in the course we have used RAM memory
and the CPU as a calculating system, and left the
results of our efforts somewhere in RAM to be
inspected manually using a monitor program. ‘This
is obviously unsatisfactory, but until arithmetic
and subroutine calls had been studied there was
simply no point in considering the screen output
from machine code.

Most micros have a memory-mapped display.
This means that an area of RAM is dedicated to
holding an image of the screen. The screen display
is composed of dots, or pixels, which are either on
or off. These can, therefore, be represented by

binary ones (on) or zeros (off), and the entire
contents of the screen can be regarded as a
‘mapping’ into dots of the bits that comprise those
bytes of screen RAM. Unfortunately, although
the BBC Micro, the Spectrum and _ the
Commodore 64 all use this mapping technique,
none of them does so in a straightforward manner.
For our purposes, the simplest method would be
to divide each row of the screen into pixel bytes
numbered consecutively from left to right, the
leftmost byte in a row following the rightmost in
the preceding row. For a variety of reasons this is
not the case on any of these machines. Let’s
consider each case separately. —

The Spectrum screen is always in high
resolution mode, and a fixed area of memory is set
aside for mapping the screen. The mapping is
complex, however, as the screen is divided
horizontally into three blocks of eight PRINT rows,
and each print row is divided horizontally into
eight pixel rows. The addressing of the bytes that
comprise these rows is sequential within the rows,
but not between the rows. The BBC Micro and the
Commodore 64 do not follow this pattern, but are
equally devious. For the moment, it is
considerably easier to understand if we confine
ourselves to outputting ASCII characters to the
screen.

This is something that the machine does all the
time, and there are, therefore, machine code
routines in ROM for the purpose. Given a suitably
detailed description of their operation, we can call
these routines from our own Assembly language
programs. What we need to know is the call
address, the communication registers, and any
necessary preliminaries.
On the Spectrum there are no preliminaries to

observe, and the communicating register is the
accumulator, which must contain the ASCII code
of the character to be printed. We need only issue
the instruction RST $10 and the character whose
code is in the accumulator will be printed on the
screen at the current cursor position. This is very
much the pattern of the other two systems, but the
RST-(ReSTart) op-code is peculiar to the Z80
command set: it is a single-byte zero-page branch
instruction that must take one of only eight
possible operands—S00,S08,$10,$18, etc. to $38.
Each of these locations points to the start address
of a ROM routine, somewhere in zero page. These
routines are typically dedicated to handling input
and output, and we call them through the RST
instruction rather than directly by address. This is
partly for speed (it is quicker to use RST than CALL,
although only the CPU would notice the

difference), and partly for the sake of the
program’s portability. If every Z80 programmer
knows that RST $10 calls the PRINT routine on
every Z80 machine, then nobody is going to
bother about where a particular systems software
engineer actually locates the PRINT routine, and
the engineer is free to locate it anywhere, provided
that zero page is arranged in such a way that the
RST locations direct programs to the start

addresses of the commonly-agreed routines.
On the BBC Micro the procedure is similar: an

ASCII code in the accumulator combined with a
JSR SFFEE command will cause the character to be
PRINTed on the screen at the current cursor

position. This is the OSWRCH routine, much
referred to in BBC literature and well
documented in the Advanced User Guide.

_ The Commodore 64 follows the pattern of the
other two machines. An ASCII code in the
accumulator and a JSR SFFD2 command causes the
character to be PRINTed at the current cursor

position. This is the CHKOUT routine, and is
documented in the Programmer’s Reference
Guide.

This, therefore, is the general pattern of use of
ROM routines and demonstrates the principle of
communication registers. A communication
between the calling program and a subroutine
may pass either way — an input routine, for
example, might pass a character from an external
device to the CPU via the accumulator. Even
when there is no substantive information passed
like this, an error code may well be returned from
the subroutine through one of the registers. ‘This
sort of protocol is documented in the many
machine-specific works of reference now
available. .

Input from the keyboard and other devices will
be dealt with in later instalments, as will high
resolution plotting from machine code. We
conclude this instalment of the course with a

summary of the various aspects of Assembly
language and machine code programming.

IN SUMMARY
We began the course with a wide-ranging look at
machine code from a very non-specific point of
view, trying to dispel some of its mystique and
place it in context as just one kind of code among
all the others that we (and computers) use. We
have seen how the same sequence of bytes in
RAM can be interpreted at one moment as a
string of ASCII data, at the next as a BASIC
program line, at the next as a string of two-byte
addresses, and then again as a sequence of
machine code instructions. A few minutes spent
playing with a machine code monitor program
should convince you that some sequences of bytes
can be disassembled as three quite different, but
valid, sequences of instructions — depending on
whether you start the disassembly at the first,
second or third byte in the sequence. Nothing
intrinsic to the code prevents this happening, and
the CPU itself cannot tell whether it’s executing
the code that you wrote, or some garbled version
of it, accidentally transposed in memory.
We went on to consider the organisation of

memory, and the common conventions of
addressing. To make any sense of this we had to
begin the study of binary arithmetic, which
immediately delineated the horizons on our view
from the CPU — in eight-bit processors we are

confined, except in particular circumstances, to

| 1 |

mys

THE HOME COMPUTER ADVANCED COURSE 317

the limits of a byte (in other words, the range of
decimal numbers 0-255). Once we encountered
the meaning and appropriateness of binary
arithmetic, the limitations of the decimal system
for dealing with the world of Assembly language
became apparent. In exploring the idea of paged
memory we saw how the size of the logical pages
must be a function of the number base, and in a
binary system that means that the page size must
be a power of two. Two to the power of eight gives
256 — the magic number in an eight-bit
microprocessor system.

Binary very quickly became too unwieldy and
too prone to error for use as a numbering system,
and we passed on to hexadecimal (number base
16) arithmetic. We saw how the eight-bit byte can
be fully represented by two hex digits, from $00
to SFF, one digit representing the state of the lower
four bits, and the other standing for the upper four

_ bits of the byte.
The way that BASIC programs are stored in the

program area was exhaustively examined. By
describing tokenisation as another form of
machine code, we gave a useful insight into the
operating system. Our discussion of end-of-line
markers showed how the BAsic interpreter handles
the difficulty of telling where one piece of code
ends and another starts, and the Commodore’s
link addressing introduced both the lo-hi address
convention and the idea of indirect addressing.

From there we moved directly into Assembly
language itself. We started from the primitive
operations of the CPU as directed by the eight-bit
op-codes that constitute its program instructions.
With the idea of coding so thoroughly explored, it
was a short step to Assembly language

- mnemonics. Once we had made that step it
became clearer that programming in machine
code or Assembly language or BAsiIc was still just
programming, and that what counted was solving
the logical problem before-werrying about how to
code the solution. Problem-solving has been the
central theme of the course. But the obscurity of
some of Assembly language’s concepts forced our
attention first to clearing the haze of confusion
that besets most people on first contact with low-
level languages. |
The course proceeded to spend some time on

the practicalities of loading and running machine
code programs on computers that were more or
less dedicated to running BASIC programs. We
looked at system variables and operating system
pointers on the BBC Micro, Spectrum, and —
Commodore 64, and learned how to ‘steal’ spare
from BASIC.
We glanced at the sreuitoonin of small

computer systems and the Z80 and 6502 CPUs,
and moved on to begin writing Assembly
language programs that manipulated memory and
the accumulator. Assembler directives or pseudo-
ops were introduced here, a step towards
practicality and the real world, but also a step away
from machine code, manual assembly, and the
laborious detail of low-level programming.

318 THE HOME COMPUTER ADVANCED COURSE

- The need for the logical constructs of a
programming language was now obvious, and we
turned to considering the processor status register
(PSR). Its role as a recorder of the results of CPU
operations was immediately illustrated in an
introduction to binary arithmetic, using the ‘add
with carry’ instruction. The central role of the PSR
and, in arithmetic, of the carry flag, was obvious as
soon as it was seen. The course has concentrated
on the processor status register and the associated
instructions since then.
We briefly examined the various addressing

modes; indexed addressing was given most
attention because of its importance in handling
loops, lists and tables. The need for a class of
instruction to change the flow of control in a
program is evident once these structures are
introduced, so we began to examine the
conditional branch instructions. while still
exploring the potential of indexed and indirect
addressing. With conditional branching, primitive
arithmetic and array-type structures, we have
almost all the bones of any programming
language. Fleshing out the form through practice
and systematic investigation is the remaining task.

The Assembly language subroutine call and —
return was examined both for itself and as a way of
introducing the last unexplored area of the
operating system — the stack. Seeing how it
works, what it is for, and how we might use it
introduced some new ploys to the repertoire of —
machine code programming, while a more
searching look at the CPU registers and their
interactions introduced new possibilities in the
manipulation of memory and the microprocessor.

Finally, with a working knowledge of the
‘architecture of the microprocessor and a
vocabulary of op-code _ instructions, we
approached binary arithmetic. The oddities of
subtraction and two’s complement, and the
complexities of multiplication and division have
all been covered in detail. Looking ahead, we will
investigate the practical craft of machine code
programming by investigating and exploring
specific tasks for the processors we have initially
concentrated our attention on (the Z80 and the
6502), as well as other processors, such as the
6809 CPU used by the Dragon 32 and 64.

Answers To Exercises On Page 299
| 1) The fastest-running solution is certainly a routine
| written specifically for 16-bit multiplicands, on the
same lines as the eight-bit routine in the last

| instalment. On the other hand, if you split 16-bit
multiplication into two separate eight-bit multipli-
cations (multiplier by |o-byte, followed by multiplier
by hi-byte), then you can call the existing eight-bit
routine twice, adjust for a carry out of the lo-byte, and
store the results in the product bytes.

2) A multiplication routine using repeated addition
consists simply of aloop whose counter is the value of
the multiplier; each time the loop is executed, the
multiplicand is added into the product.

Example:

LOCATION § MACHINECODE ASSEMBLY LANGUAGE

C100 6A ROR A

ak AFTER
2222227 12222201

PB |scr

a
eee ee

Example: : |

LOCATION MACHINECODE © ASSEMBLY LANGUAGE

C100 ED A3 59 #£SBC S$59A3

BEFORE AFTER

Example:

LOCATION § MACHINECODE § ASSEMBLY LANGUAGE

C100 OA ASLA

BEFORE rr ER

thse

eee
eee

Example:

LOCATION . MACHINECODE © ASSEMBLY LANGUAGE

C100 CD 7E 40 CMP S407E

BEFORE AFTER

LOCATION MACHINECODE © ASSEMBLY LANGUAGE
C100 CB 1C RR 4H

BEFORE AFTER
10707001
10101100

LOCATION © MACHINECODE © ASSEMBLY LANGUAGE
C100 DE 8 SBC A,985

BEFORE AFTER

LOCATION MACHINECODE © ASSEMBLY LANGUAGE
C100 CB 23 SLA E

BEFORE AFTER
01707001
00000000

Oe
$C100
$C101

Re
Program |
Memory

Example: : oe

LOCATION MACHINE CODE ASSEMBLY LANGUAGE

C100 FE 7D CP S7D

BEFORE AFTER

THE HOME COMPUTER ADVANCED COURSE 319

Birth Of A Dragon
Dragon Data is unusual
among British home
computer companies in that it
builds its own machines,
whereas most companies,
such as Sinclair and Acorn,
subcontract the production of.
their computers. Dragon have
recently built a new factory at
Port Talbot, West Glamorgan,
shown here

WELSH RARE BIT

Since its launch in 1982, the Dragon 32 has
become as familiar a sight in the high street
shops as the Sinclair Spectrum or the BBC
Micro. But financial problems have cast
doubt on the future of the company and on
its plans to market the Dragon 64 and to
introduce a micro to MSX standard.

Dragon Data was first established as a subsidiary
of Mettoy, the toy manufacturers, in 1981.
-Mettoy’s intention was to cash in on the boom in
home computers, thgn just beginning in the
United Kingdom. With financial assistance from
the Welsh. Development Agency, a factory was set
up in Swansea, and the@)ragon)32 made its first
appearance in August 1962.

The company opted for»Motorola’s 6809
microprocessor, Father tap, the ‘260, or 6502
favoured by most other ,honieé computer
manufacturers. The DragOns) circuitry followed
Motorola’s recommended layouts which led 6
accusations that Dragon Data‘fad Based its design
on Tandy’s Color coniputer, another model that
used the Motorola format, A'$id@ Gffect Of this was
that users soon discovered that ‘someSoftware
written for the ‘CoCo’ ‘Would, run @nihel welsh
machine as well.

The Dragon 32’s major selling points were its
‘Microsoft BAsic (the most widelygusedeBASIC
dialect) and its full-sized f#ypewnter-style
keyboard. At the time the machite was Jaunicned,
the Dragon’s keyboard was matehed 6nly*by the
Vic-20 in the under-£200 sector of the market.
Dragon Data’s marketing strategy also played a
large part in the machine’s success; in the months

320 THE HOME COMPUTER ADVANCED COURSE

leading up to Christmas 1982 the ZX Spectrum
and the BBC Micro were both in short supply, and
the Commodore 64 had yet to appear. The
Dragon 32 was available in large numbers, and by
early 1983 the company had sold 32,000
machines. This was in part due to the Mettoy
connection; those major chain stores such as Boots
and Dixons, which had always stocked the
company’s toys, were more than happy to sell the
new computer.

However, in the summer of 1983, Dragon Data
found itself in deep financial trouble. The
company Was,expanding»whendMetteyewent into
receivership, casting doubt on the future of its
Welshgubsidrary. Dracon was eventually saved by
a COMSORIMaLOr COmpanics led DY rrutec, the high
technology investment arm Of the giant Prudential
insurance’ dompany. A %2.5 million rescue
packase was put together, and the firm acquired a

(lew managing director in Brian Moore, a former
executive Of GEC. These changes enabled
Dyaeon Vata to overcome its cash flow problems,
t@ invest in a new manufacturing plant in Port
Jalbol_and to continue its development of the
Dragon 64 and disk drive.

The Dragon 64 has 64 Kbytes of RAM) an
improved keyboard and an RS232C serial
interface. The disk drive uses standard 57° floppy
disks running under Dragon DOS, which can be
used by both the 32 and 64 models, A version OF
the powerful OS9 operating Systems 1s/ also
available for the Dragon 64. |

But a shadow fell across all"Dragon's plans in
June 1984, when Prutec and the Welsh
Development Agency refused to put up more cash
and the firm went into receivership. It. was
uncertain whether a buyer could be found for the
company. At the time there were three new
machines, as well as other computer-related
products planned for 1984 alone. One of the
planned micros was intended to meet the MSX
standard being introduced by Japanese companies
(see page 141). But the Welsh Dragon had become
an endangered species.

‘Market Wizard
Richard Wadman, the Marketing
Director of Dragon Data, was
planning to sell a whole new
range of Dragon computers
when the company suddenly
went into receivership

ics - a : i oe es

emit cs)
ae Si ses.

oe soe

ase
Cs
_
Ae : Ges

